Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications for −1 ribosomal frameshifting stimulation

نویسندگان

  • Zhensheng Zhong
  • Lixia Yang
  • Haiping Zhang
  • Jiahao Shi
  • J. Jeya Vandana
  • Do Thuy Uyen Ha Lam
  • René C. L. Olsthoorn
  • Lanyuan Lu
  • Gang Chen
چکیده

Minus-one ribosomal frameshifting is a translational recoding mechanism widely utilized by many RNA viruses to generate accurate ratios of structural and catalytic proteins. An RNA pseudoknot structure located in the overlapping region of the gag and pro genes of Simian Retrovirus type 1 (SRV-1) stimulates frameshifting. However, the experimental characterization of SRV-1 pseudoknot (un)folding dynamics and the effect of the base triple formation is lacking. Here, we report the results of our single-molecule nanomanipulation using optical tweezers and theoretical simulation by steered molecular dynamics. Our results directly reveal that the energetic coupling between loop 2 and stem 1 via minor-groove base triple formation enhances the mechanical stability. The terminal base pair in stem 1 (directly in contact with a translating ribosome at the slippery site) also affects the mechanical stability of the pseudoknot. The -1 frameshifting efficiency is positively correlated with the cooperative one-step unfolding force and inversely correlated with the one-step mechanical unfolding rate at zero force. A significantly improved correlation was observed between -1 frameshifting efficiency and unfolding rate at forces of 15-35 pN, consistent with the fact that the ribosome is a force-generating molecular motor with helicase activity. No correlation was observed between thermal stability and -1 frameshifting efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stem–loop structures can effectively substitute for an RNA pseudoknot in −1 ribosomal frameshifting

-1 Programmed ribosomal frameshifting (PRF) in synthesizing the gag-pro precursor polyprotein of Simian retrovirus type-1 (SRV-1) is stimulated by a classical H-type pseudoknot which forms an extended triple helix involving base-base and base-sugar interactions between loop and stem nucleotides. Recently, we showed that mutation of bases involved in triple helix formation affected frameshifting...

متن کامل

Characterization of the mechanical unfolding of RNA pseudoknots.

The pseudoknot is an important RNA structural element that provides an excellent model system for studying the contributions of tertiary interactions to RNA stability and to folding kinetics. RNA pseudoknots are also of interest because of their key role in the control of ribosomal frameshifting by viral RNAs. Their mechanical properties are directly relevant to their unfolding by ribosomes dur...

متن کامل

Functional analysis of the SRV-1 RNA frameshifting pseudoknot

Simian retrovirus type-1 uses programmed ribosomal frameshifting to control expression of the Gag-Pol polyprotein from overlapping gag and pol open-reading frames. The frameshifting signal consists of a heptanucleotide slippery sequence and a downstream-located 12-base pair pseudoknot. The solution structure of this pseudoknot, previously solved by NMR [Michiels,P.J., Versleijen,A.A., Verlaan,P...

متن کامل

Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting.

Programmed ribosomal frameshifting is often used by viral pathogens including HIV. Slippery sequences present in some mRNAs cause the ribosome to shift reading frame. The resulting protein is thus encoded by one reading frame upstream from the slippery sequence and by another reading frame downstream from the slippery sequence. Although the mechanism is not well understood, frameshifting is kno...

متن کامل

Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of -1 ribosomal frameshifting.

Many viruses use programmed -1 ribosomal frameshifting to express defined ratios of structural and enzymatic proteins. Pseudoknot structures in messenger RNAs stimulate frameshifting in upstream slippery sequences. The detailed molecular determinants of pseudoknot mechanical stability and frameshifting efficiency are not well understood. Here we use single-molecule unfolding studies by optical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016